EAST-WEST
JOURNAL OF MATHEMATICS

East-West Journal of Mathematics begins to publish papers in pure and
applied mathematics in 1998. It welcomes the submission of research papers,
survey papers or research announcements of authors from all parts of the world.

SOMPONG DHOMPONGSA
Chiang Mai University
Chiang Mai 50200 Thailand
sompongd@ chiangmai.ac.th

SURENDER K. JAIN
Ohio University
Athens, OH 45701, USA
Jain@ oucsace.cs.ohiou.edy

Exercutive Editors

DINH VAN HUYNH
Ohio University
Athens, OH 45701, USA
huynh@ bing.math.ohiou.edu

MARION SCHEEPERS

Boise State University

Managing Editor:
NGUYEN VAN SANH

Boise, Idaho, USA
marion@ diamond.idbsu.edu

Mahidol Univerity, Thailand. e-mail frnus@ mahidol.ac.th

Y. A. Al-Khamis
King Saud University
Riyadh, Saudi Arabia
Nguyen Tu Cuong
Institute of Mathematics
Hanoi, Vietnam

Miguel Ferrero

Univ. F. Rio Grande do Sul
Porto Alegre, Brazil

Editorial Board:
Bruce Berndt

University of Illinois
Illinois, USA
Klaus Denecke
Potsdam University
Potsdam, Germany
Willem Fouché
Univ. of Pretoria
R. of South Africa

S.R. Lépez-Permouth Yongwimon Lenbury

Ohio University

Athens, OH 45701, USA
Nguyen To Nhu
New Mexico State University
New Mexico, USA

Vu Quoc Phong
Ohio University

Athens, OH 45701, USA
S. Tariq Rizvi

The Ohio State University
Lima, OH 45804, USA

J. B. Srivastava
Indian Inst. of Technology
Delhi, India

Tran Duc Van
Institute of Mathematics
Hanoi, Vietnam

Mahidol University

Bangkok, Thailand

K. Oshiro

Yamaguchi University
Yamaguchi, Japan

Nittiya Pabhapote
Univ. of Thai C. of Commerce
Bangkok, Thailand

A. I. Singh

University of Delhi

Delhi, India

R. Sullivan

Univ, of Westren Australia
Nedlands 6907, Australia
‘Weimin Xue

Fujian Normal Univ., Fuzhou
Fujian, P. R. China

Gary F. Birkenmeier
Uni. Southwestern Louisiana
Lafayette, Louisiana, USA
Nguyen Viet Dung
Ohio University

Zanesville, Ohio 43701, USA
Krisorn Jittrontrum
Chiang Mai University
Chiang Mai, Thailand
Vites Longani

Chiang Mai University
Chiang Mai, Thailand

Jae Keol Park

Pusan National University
Pusan, South Korea

T. Poomsa-ard

Khon Kaen University
Khon Kaen, Thailand
Surjeet Singh

King Saud University
Riyadh, Saudi Arabia

Vu Kim Tuan

Kuwait University

Kuwait

CONTRIBUTIONS IN
MATHEMATICS AND
APPLICATIONS III

ICMA-MU 2009, December 2009, Bangkok, Thailand

Editors: Yongwimon Lenbury
Nguyen Van Sanh

A special volume 2010 published by East-West Journal of Mathematics
ISSN 1513-489X




[14] V. Gazi, B. Fidan, Y.S. Hanay, and M. Ilter Koksal, Aggregation, Forag-
ing and Formation Control of Swarm with Non-Holonomic Agents Using
Potential Functions and Sliding Mode Techniques, Turk. J. Elec. Engin.
15 (2) 2007.

[15] V. Gazi and R. Ordonez, Target Tracking Using Artificial Potentials and
Sliding Mode Control, International Journal of Control, 80(10) October

DNNAT 1 ean trar
ZUU 1ULU-1LUVJY .

Contributions in Mathematics and Applications 11

An Inter. Conference in Mathematics and Applications, [CMA-MU 2009, Bangkok.
Copyright @by East-West .J. of Mathematics.

All right of reproduction in any form reserved.

230 The Control Design of Symmetric System for Tracking a Desired Path with...

Contribution in Mathematics and Applications 111
East-West J. of Mathematics, a special volume 2010, pp. 231-252

AERODYNAMICS

Gabriel Mititelu* and Yupaporn Areepong'

" Department of Mathemalical Sciences, Unwersity of Technology Sydney
Broadwaly, NSW 2007, Sydney, Australia
e-mail: Gabriel. Mititelu@uts.edu.au

TD(:])(J,rtment of Applied Statistics, Faculty of Ap;)lied Science,
King Mongkut’s University of Technology North Bangkok,
1 I nonsn 1N L)

o sl 1N0 nalo
LIGIRGRON LUCUU Thailand

e—mail:yupapoma@kmutnh ac.th

Abstract

We derive integrable solutions for the two-dimensional (2-D) re-entry
dynamical equations of motion of a space vehicle, under the assumptions
of standard atmospheric model. It is desirable to have analytical solutions
for this important and practical problem which arise during the atmo-
spheric re-entry phase. Therefore, our solution can be effectively applied
to investigate and control the rocket flight characteristics. By setting the
initial conditions for the speed, re-entering flight-path angle, altitude,
atmosphere density, lift and drag coefficients, the nonlinear differential
equations of motion are linearized by a proper choice of the re-entry
range angles. By carrying out the closed-form integration, we express
the solutions with the Exponential Integral, and Generalized Exponen-
tial Integral functions. Theoretical frameworks for proposed solutions as
well as. several numerical examples, are presented.

1. Introduction

Since the beginning of the space flight, one of the most important aerodynaric
problem encountered in astronautics is the return of satellites and space vehicles

* corresponding author
Key words: analytical solutions, Exponential Integral, Generalized Expouential Integral.
2000 AMS Mathematics Subject Classification: 76G25




232 2-D Solutions in Re-Entry Aerodynamics

to the Earth’s surface.

Inaccurate knowledge of the flight characteristics may lead to unacceptable
errors in trajectory stability during the guidance and control process. This
requires analytical solutions to the re-entry dynamical equations of motion of
space vehicle, during the atmospheric re-entry stage.

The main goal of this paper is to derive approximate analytical solutions
for the equations of trajectory and fiight-path angle of a space vehicle during
the re-entry phase in Earth’s atmosphere.

Information about re-entry trajectories can be instantly obtained if the
space vehicle’s dynamical equations are integrated in closed form. In practice,
traditional algorithms for numerical integration, see Regan [1] or Press et al. [2]
can be alternatively employed to approximate the solutions and compare it with
the analytical resuiss.

Here we derive explicit solutions for the two-dimensional (2-D) equations
of motion. known in the literature as planar motion [3, 4], when we know
the initial conditions for the atmospheric re-entry parameters such as velocity,
angle altitude. atmospheric density, lift and drag coefficients.

Under the assumptions of the Standard Atmosphere Model, i.e. the density
varying exponentially with the altitude, the Newton's second law completely
describes the re-entry dynamical equations of motion.

The re-entry problem becomes very complex when the analytical integration
of a system of two nonlinear differential equation is no longer possible.

No many analytical closed-form solutions are well known, most of them
developed during the period of 1960-1970’s, e.g. see Ehrike [3]. Hankey (5],
Regan [6], Loh [7] and Dunning’s [8, 9] NASA reports, and more recently by
one of the author, see Mititelu [16].

The paper is organized as following. In Section we presents the basic
dynamics of re-entry, as well as the differential equations of motion. In sec-
tion . under some simple approximations, the nonlinear differential equations of
motion are reduced to standard ordinary non-homogeneous linear differential
equations. and integrated in closed forms.

2. The planar equations of motion during re-
entry stage

It can be shown (see Mititelu [16] or Dunning’s [8. 9]) that for a space vehicle
at the initial re-entry point on its trajectory at altitude z; above the Earth
surface with the initial velocity V;. and initial flight path-angle 8,. the governing
equations of motion in the Earth’s axes coordinates are

mv (t) = —

Vit
E—Z(—) SCp — mg sinb(t) (1)
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respectively

sz( ) s,

mV (t)8(t) = (g - Vz(t)) cos 6(t) (2)

Ry

where Cp and Cp denotes the drag and the lift coefficients, and p(t) is the
Earth atmosphere density at the time ¢ after re-entry.
The scalar components for velocity projections along the Earth-axes are:

Vo (t) = (t) = V(t)sin6(2) 3)
Vo (t) = £(t) = V(t) cos 0(1)
where 6(t) is the satellite re-entry angle during manoeuvre at time t.
According to the standard conventions, the path-angles are negative for
re-entering and positive if the vehicle is moving up on the trajectory.
Therefore. in the case 8(t) < 0 substitute 6(t) with —6(t) the second relation
on Lq (3) remain unchanged, the first lelatlon on Eq.(3) is changing to V. (t) =

-V U) sin U\T) and equauous Dq \1/ LA] \a/ becomes

2
mV(t) = pVQ( ) SCp + mg sin(t) (4)

2
mV (t)6(t) = pV;( ) S5CL +m (g VR(t)> cos 6(t) (5)

0

with the substitution 8(t) = 5 — ¢(t). 0(t) = —(t), the equations of motions

may be found in the same t01 m in Dunning’s paper [9]

. X'Z( ) .
mV (t) = ———= SCp + mg cosp(t) (6)
/2 72
mV (t)g(t) = P 2( ) SCy, —m <g — ‘Rflt)> sin (1) (7

The equations Eq.(6) and Eq.(7) can be expressed via a new re-scaled variable

V(t)/VgRo. in the form
R(, d { V(t) > 1 (SCD> R
g dt VaRo T2 m P

Ry . 1 Vi(t) o -l SCL) ( V(t) )
Ve ) ()| a3 (5 ) o (o

VZ
) ( g}gf)’) feosplt) ()
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In the approximation of isothermal atmosphere [6] the variation of density p
with the altitude z can be expressed with the Barometric Law as

p(z) = poe™"* (10)
where pq is the density at z = 0 on Earth surface (sea level density). and 3
is the baromctric cocfficient. Differentiating the Barometric Law and use the
velocity expression along z axis, V;(t) = (t) = ~V(t)sinf(t) = —V(t) cos g(t),
then
dp(z(t)) = 3p(2(E))V (¢) cos p(t) dt (11)
and Eq.(8), Eq.(9) expressed in the variable p becomes
4 (V) (50 (o) _1(2Y
dp \ gRo m3 cos ¢(p) p \3Ro

(Sm@(ﬁ)) / 1 \M/ gR.() B \ :l(g—cvi\ ‘
dp "\BRo) p \VZp) 1/ 2\ 3 ) (13)

In the next section certain closed form solutions for the above equations may
be evaluated under various initial conditions. We derive the expression for the
space vehicle velocity V(t) after re-entry. respectively the fight path-angle »(t)
during the motion on the re-entry trajectory, at two different stages.

In Section we analyze the case of small re-entry angles. chosen such that in
the range, let said 199 <| ¢(t) |< 1099 we can perform some approximations
and integrate the system of differential equations Ea.(8). Eq.(9) to obtain the
analytical solutions for V(t) and o(t).

In Section we analyze the case of large re-entry angles ¢, considered for
practical reasons, in the interval 1049 <] »(t) |< 30‘“9 and integrate the
differential equations Eq.(12), Eq.(13) in closed-form. As pointed out by Han-
key [5] and Frank [1] for practical purpose analytical solutions are preferred for
rapid estimation of the design parameters.

3. Analytical solutions for the re-entry equations

3.1 The case of small flying path-angles

With the change of variable y(t) = V(t)//gRo and introducing the notations:

R SC SC
== up= ( : D) pRo. i = < )/)Rn (14)
g 2m 2m
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where pp and py are real positive dimensionless constants, the nonlinear dif-
ferential equations Eq.(8), and Eq.(9) becomes

Ti(t) = —up y* (t) + cos p(t) (15)
2
() = 0 + (L) sino(r (16)
\ AN /

Expanding sin (t) and cos (¢) in the power series for small values of the angle
p(t) (see [11])

2n+1
7L(p t
sinp(t) Z( b /)n;(m ~ (1)
n=0
. (17)
()
cos(t) = E (-1) ~1

n=0

and truncate these series to the first terms corresponding to the first order
approximation the equations Eq.(15), Eq.(16) becomes:

Ty(t) = —up y*(t) + 1 (18)
‘ 1-y°(t)
—T(t) = —pry(t) + (——(— e(t) (19)
y(t)
Separate the variables in ihe equation £q.(18) and intcgrate from the initial
re-entry value y; = y(t;) = Vi/V/gRo to the final value y(t), and using the well
known exact expression for the integral [(a? — z?)7'dz = é arctanh (£), for
a > 0 (see [12]}. the final solution is
1 VHED
y(t) = tanh { t —t;) + arctanh (y; pD)j\
(0= —= "2t~ 1) VD
Y + \/% tanh [ LED (f — tl)] (20)
1+y,,/th(mh[V f—f)]
The Eq.(20) may be written as:
1 Vi
y(t) = tanh {t ( ! D) + N}
VHD T (21)

K = arctanh (y;/up) — t.
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Table 1: Re-entry velocity at small flying path-angles when the initial
re-entry parameters are specified

V (Km/sec) SCp/m t; (sec) =z (Km) Vi (Km/sec) ¢t (sec)

14.87 0.1 5 95 15 30
10.29 0.15 10 125 10 40
6.79 0.2 2 85 8 GO
21.02 0.25 8 10 25 130
32.41 0.3 20 110 35 180
18.91 0.4 12 105 20 90
8.95 0.5 15 90 30 140

Now. taking into account the notations Ea.(14), Eq.(21) becomes

V(t) = (pZ(g)) (SZ:D) tanh [t\/(%) (Syan> plz) + ri}
- \/<%> (%) ¢97 tanh [t\/(ggﬂ) (%) e=9 4 /‘»:|

Substitute the solution Eq.(21) in Eq.{19) the time variation of re-entering
path angle mayv be written as

de(t) + ‘1‘ I—— ! tath /i "o —‘rn\ + /i cotanh /é 1D + H\
dt Tl VILD \ } ’ \ T }

= FL_ tanh ——‘HD+/{
ViD T

TVHD

The Eq.(23)is a non-homogeneous linear differential equation of the form:

dig(t)
dt

+ P(t)(t) = Q1) (24)

where P(t). Q(t) are continuous functions on the interval [¢,. t]. with the general
solution

t

#(t) = exp -/P(t)dt /Q(t)exp / P(t)dt | dt (25)

t,

with the initial condition (¢;) = 0. The functions P(t) and Q(#) corresponding
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to Eq.(23) are:

P{t)=— ! tanh <t vIID + n) + = ED cotanh (t—————‘m) + )
TED T T
(26)
e “r [, BD |

<

Qi) = tank { £
R/ R

then

t ; Vi m
[ P(t)dt = 10 [smh (t i h)\ ] + lo;z! [COSh i “) ] l

zJ, l L(osh \t ‘/‘_D +K _|
(27)
and ‘
f [cosh (t—@ +R)] “e
exp | — / P(t)dt | dt = K (28)
4 sinh (t @ + K)
where K denotes the constant term
sinh (ti A/i;z + K)
- Y
K = vy (29)
l’ccsh /t VD H .‘:“
[P /]

Substitute Eq.(26), Eq.(27). Eq.(28) in Eq.(25) and simplify the relation with
the constant K after some algebra we obtain

sinh (t @ + K,)

I/n
[cosh (t @ + h)} "

1

[(.'()b‘ll(t~\/‘:E +f;]”’ ! =

e(t)= pL ) /tanh(t ED L n)
BD  sinh (t @ + H) T

¢

i

. vVED |\ e

_( i >[c05h(t - +n)]
TVHD sinh (t ED f;)

' T ~p ! ; D “¥o
/ [(:()sh <f, VHED + h>:| ° dt — / [cosh (t HD + h)} dt
T . T
t

§ L (30)




238

2-D Solutions in Re-Entry Aerodynamics

Using the integrals of the following type (see Annex A, Theorem 1):
¢

Lop(t) = / cosh' "P(At + k)dt
t;

1 3 . -1
= ——Re {(_1)’—22 B [l § 2ALetR) ] | 2ALR) 9 P - }
< e AS L 1)

<

t

T p(t) = /cosh_l_”(At + K)dt

t

= 1 R.e{(wl)l%ﬂ B [1 + e2AtHs) 4 p2AtER) gy m‘}

2P A ! ) 9

where Re{-} denotes the real part, p € Ry is a positive real number and

21

T ca—17:

Bz, z15a,0)= | ¢

Ah—1 . PN
(1—16)° dt {(32)

k = arctanh {Vm l (SCDP ] - tm/% SCDP) (33)

\
b2 m 1
P= b R (50 D) p
Bv combining Eq.(30) and Eq.(31) may produce the following solution for the
re-entry angle

s = (22) {2co [1(£2)

b sinh [t(@) r{]

-
N
L)
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Table 2: Re-entry flying path-angles for specified re-entry initial con-
ditions

¢ (deg) SCp/m_ t (sec) =z (Km) V; (Km/sec) t (sec)

8.44° 0.1 10 100 12 25
7.35° 0.15 10 90 14 65
8.81¢ 0.2 50 95 25 55
3.51° 0.25 120 110 30 60
5.847 0.3 100 120 35 20
2.91° 0.4 110 115 40 60
1.53¢ 0.5 70 120 45 10

3.2 The case of large flying path-angles

These re-entry path angels are valid with the approximation that 1/ (:205 p(p) =
1, see Alexe and Staicu [13]. Performing a change of variable y(p) = V*(p)/gRo.
the Eq.(12) becomes

(35)

dy(p)+SCD _1< 2 )
dp ma3 -

y(p) =\ R,

The solution of Eq.(35) with the initial condition y; = y(p:) = V¥Hpi)/gRo =
V2/gRa is given by

p P
SCp ) \7/1 ( 2 ) p (=P +
— OXT - e — ——— T id Yi
y(p) nxv(\ / 3 dp >\ 3R, e P

P / Lo ]
2 () Fel5iR)e _5CD (p p
_ e ( g /7/ dp+1}16’ i i
o

(36)
- 3Ry
pi

and the integral in the last term of Eq.(36) is one of the following type (see
Annex A. Theorem 2}

dp = Ei(ap) — Ei(ap;), o= (37)

[ e SCo
/ Iy mi3
)

where Ei(x) is the Exponential Integral Function defined in the case of x > 0
as the Cauchy Principal Value

+o

o | [ ! 38
EI(L) = — ,:13(1)1* / —Tdt -+ ——t—dt (\ )




240 2-D Solutions in Re-Entry Aerodynamics

Thus, the dependence of velocity V (t) on density p, when the initial re-entry
density p; and velocity V; are known, is

V2(p) 2 -(2%2)» SCp SCp V2 scpi,
I Y] Ei — FEi ; i o (e—pi)
gRo <,3R0> ¢ [ ' ( m3 p) ' ( m3 "’ >]+QRO ©

39)
20\ —{ 352 s exp(—B2) [ wa. [SC . [SC
V%(z,8Cp/m) :(g)e ( il )p" p(=5 )[El (—m—é) Po exp(—32)> —~Ei <-ﬁpi)}
+ V_lg e—%ﬁ[poexp(—ﬁﬂ—m]
gRo
(4n)

Table 3: Re-entry velocity at large flying path-angles when the initial
re-entry parameters are specified

V (Km/see) V; (Km/sec) SCp/m 7z (sec) =z (Km)

1.2 105 0.1 150 75
0.4 145 0.2 110 45
0.95 100 0.3 120 65
1.26 130 0.4 160 30
1.17 150 0.5 180 60
1.31 190 0.6 175 85

With a chanoe of variables

nge ol vallaixnes

u(p) = sinp(p). ap =+ <SCL>

2\ mJ3 (41)
b(p) = __1__ gRo 1
P= 3Re \V2(p)
Eq.{(13) becomes
M + Mu(p) =aqay (42)
dp p

The next step is to solve the Eq.(42) under the initial condition u(p;) = u; =
sinz,. Substitute gRy/V?(p) from Eq.(39) in the last equality of Eq.{41) one
obtain

92/”“) 1

1
b(p) = =i
V)= S Ei2pan) ¢ 3R

(43)

where

C V23 o, .
ap = % (S 5) and C = —é;‘—f"”‘“" - Ei(2p,ap) (44)
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The general solution of Eq.(42) is

p p p
b b
wp)=exp | - [22ap) | [asexp [%2ap) dpruton| )
pPi Pi P
and,
[0y, 1 [eolo 4 Ly, <£> (46)
/ p p= 2 P BRqg pi

Ei(2pap)+C

=
°

o {cao Anng){ A_: Thpm*em I%)

Arerivir tur
OWIE vy pe \ouv Sl

b .
[m, n — S"n—l ——‘——"'_dx =1In {——” i E.l(mb):‘ (47)
’ z n+ Bi(mx) n + Ei(ma)
[00) 4y o [(2) 7 [ 4 BiCpe0) (48)
] o T\ C + Ei(2piap)
pi

and

)

A 1/3R f T
Cp.' oM _ Ei(2pap)
/GL exp /b(/)) lp dp: G‘L\/_{)L /ﬂ 1/BRO< 1+ - dp
. P VC + E1(2pi(LD)p

pi o
In Eq.(46) using the series expansion (see [12])

Ei(2 1 (Ei(2 = -, (2n—3)!" [Ei(2pap)\"
/, . Ei( é)ao) :lJr'E( i( gan)) e o ( L

n=2

1 /Ei(2pap)
~l+§< C )

where the series in the Eq.(50) is truncate at the first two terms. Notice that
the expansion Eq.(50) is valid only if | Ei(2pap)/C |< 1. where (2n - 3)!! =
1:3-5...(2n—3)and 2n)!!' =2-4-6...(2n). is the double factorial. For the
general discussion regarding the validity of expansion FEq.(50). see Mititelu [16].

(50)
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Substitute the approximation Eq.(50) in Eq.(49), then

L I3
Ei(2 1 Ei(2
/ﬂ“”‘”*” ( 1 4 Bilpan) CpaD)> dp:/p_l/ﬁRn <1+ x i( Cpan)) dp

pi Pi
F
1 [y ‘an

1= (1/3R0) |

1 1 f v 1an i
) —1/BRy pife
[ 436/ # Ki(2pap)dp

Pi

(51)

The last integral in Eq.(51) is one of the following type

P
1 -
~VBR Bi(2pap)dp= ———a{ pl T/PRIE —2pi Ei(2p;
/p l( pap)dp [1_(1/3120)] {Pl [ 1/ﬁR0( piap)+ 1( paD)]
pi

~ ptWBR) [ B e (~2pap) + Ei(2pap)] )

(52)

where E,(z) denotes the Generalized Exponential Integral Function. By com-
bining Eq.(52) and Eq.(51) one obtain

P
. Bi2pap)\, 1

pPi
{ 1-(1/8Ra) E/3r,(—2pap) + Ei(2pap) (53)
P 1+ ;
2¢
—(1/3Ra) Ei/3 N —-2p; + Ei(2p;
R |y 1/3Ra( P’TD) i(2piap)
2¢C
Based on Eq.(53). Eq.(49) becomes
o
/a exp / () dp = aLpg/ﬁRo
Le — = =
T\ e [1 = (1/3R0)] /1 + [Ei(2p;ap)/C]
Pi :
L—(1/3Ro) 1 EI/’jRn(—Zp(,LD) + Ei(ZpaD) (5—1)
2C v
L=(1/3Ra) Ey/3r,(-2piap) + Ei(2piap)
0, 1+ 30

Substitute Eq.(54) and Eq.(48) in Eq.(45) the final solution can be expressed
as
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(p 1/8Ra C + Ei{2p,ap) aLp:/ﬂRn
ule) = (F> T+ Eizpap) | T T (18R] LT Bi@nan)/C

L pr-/sRa) |y E\/sr.(—2pap) + Ei(2pap)
2C
_ A= (1/3R) [ - E)/sr.(—2piap) + Ei(‘ZPiaD)} } }
' 2C

(85)

Returning now to the change of variable given by Eq.(41), ¢(p) = arcsin(u(p)),
and introducing the notations

B appiV/C _ Oi lSCL) Vs N (SCD ~>—Ei<SCD )
T _Q/ARy) [ - (1/BRy)]\2 mB )\ 29 TP\ ms mpB

(56)

Ey/sr, (— %pi) + Ei (%m)

(V28/g) exp (Sl—g-ﬁﬂpl) - 2Ei1 (“—S;%aapi) (57)

D=1+

then for fixed values of initial re-entry altitude z;, and of ratios SCp/m, SCr/m
the quantities B. C and D, remain constants during the motion. Substitute
E.(56) and Eq.(57) in Eq.(55) the final solution of Eq.(13), which gives the

P . P I S Y (N g aun e 1N A T P & AU R
CliaiaCeelistics O wit TGNy nigiiv paui-aiigid, o

)\ /R 3 SC
sinp(p(z)) = (f)_(__)> ! {(Visinw)\/Q—exp (EBQ'OL)
Pi \/C+Ei (.i(__Q ) g

ma [)(Z)

p(z) 1-(1/8Ra) Ei/sr, (—%‘f—p(:)) + Ei (%p(z))
+B ( ) -1+ Y
(58)
where A = Vsiny; \/3/2¢. is a constant factor which depends on initial re-
entry velocity and path-angle. The general solution Eq.(58) describes the flight-
path angle at different altitudes z, and different values of SCp/m. SCr/m.

4. Concluding Remarks

Though the rethod and theory developed in this paper are useful in their own
right. thev represent contributions to a broader context. In particular. the
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solutions derived here can be used to perform an error analysis in velocity and
flight path-angle during the maneuvers.

The equations which admits a closed-form solution expressed in terms of
the Generalized Incomplete Beta function, the Exponential Integral, and the
Generalized Exponential Integral proposed in Sections and . which are far
from being simple, describes the atmospheric re-entry velocity and flight-path
! under very simple assumptions.

More precisely. the atmosphere density varies exponentially with the alti-
tude, according to the Barometric Law, and the density at a specific altitude is
practically constant around the Earth, i.e. the homogeneous atmosphere model
is assumed.

osa F

s

Diurnal and latitudinal density variations, as well as space vehicle's cen-
trifugal forces are neglected (see Duncan {10}, pg.218). More complex effects

- o Do can produce perturbations in the satellite trajectory. For example, the atmo-
spheric drag due to the atmospheric rotation, or the oblateness of the Earth as
(a) The variation of (b) The variation of well as the Moon-Sun attraction will change the dynamical equations of mo-
sing(z, SCp/m,SCr/m) at constant sing(z, SCp jm, SCr /) when ; tion The gravitational acceleration remain constant and does not vary with the
value SCp/m = 0.01 and different values Cp/Cp =0.1. : re-entry altitude z.
for SCp/m. :

More recently Palacidn [17] have analyzed perturbations in the orbits of a
satellite due to inhomogeneous gravitational field. The space vehicle motion is

o ‘ planar, i.e., a 2-D motion.
o Annex
Definition 1. The Generalized Incomplete Beta Function is defined by:

3000 e o o0 s st g o i ey oy e v 100000

Nttiade 2 i m Attitacde 20 e
(<) The variation of (d) The variation of 21
sing(z, SCp/m.SCr/m) at constant sing(z, SCp/m,SCr /m) at differ- _ a—1 b—1 g
. ' 2, 201.0.0)= [ x -z dx B.1
value SCp/m = 0.4 and different values ent values for SCp/m and SC; /m. : : B(z0. 21 b) (1 ) ( )
for SCp /m. o

Figure 1: The variation of singz(z, SCp/m, SCr/m) versus altitude z and dif-

ferent values of SCp/m and SCL/m where z, and z1, are non-zero real numbers, or complex numbers with non-zero

real real part, and a.b € R such that a # 1, b # 1.

Theorem 1. IfB(zg, 2, a.b) denote the Generalized Incomplete Beta Function.
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then the following evaluation holds:

t

Lo, ()= /coshl_” (At + k)dt

= ')1 l"c{( lf_;lE <us ~i 1‘p~1\l
22-rPA T hE T
I _,(t) = /cosh_l_” (At + r)dt
ti
1 _ -
= Rve[(-lyl—ilB(Zn,Zl,—p<p%_l\l
TR S 2 /]
where
20 = 1+ 2 ALTR) 5 = ] 4 oHALER) (B.3)

and p € Ry, is any non-zero real positive number.

Proof With the notation z = At-+& using the relation coshz = (e* +¢7%)/2 =
(e2* 4 1)/2¢. the first equality of Eq.(B.2) becomes:

t
1 / [1 +82(At+n’)l

[I—I) (t) = 21-p J C(‘At-l—x,)(]«_n) dt
[
(B.4)
1 2 lp, p=2
= 557 / (u® + 1) "PuP du
eAt+r

where a change of variable u = e~ is performed in the second equality in the
Eq.(B.4). With a new change of variable u”+1 = z the Eq.(B.4) is transformed
to:

62(At+~)+1

(-1)*2" . pos
[lﬂ'(t)zw TPl —x) 7 dr
e2AL (B.5)

1 3= p— 1
= 3a Re{(——l)TEB <zn.z1.2 ‘p‘l 5 )}

where the integral in Eq.(B.5) is expressed with the Generalized Incomplete
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Beta Function Eq.(1):

2
C'Z(Al+~)+1 (B6)
= / 271 - x)l%lda:

AL +R) L]

B <1 L e2lAteRn) | 2Atem) 9 o p- 1)

With the notations for zo and z; defined by Eq.(B.3), after taking the real part
of Cauchy Principal Value the first equality in Eq.(B.2) is demonstrated. Using
now the integral for I1_, (t) from Eq.(B.2) then:

*

I_yp(t) = /cosh“l_”(At + Kk)dt
. (B.7)

2"1‘"4 Re {(_1)1—;“_&3 (zn-‘ z1, =P, pt 1)}

[ o]

By combining Theorem (1) with the definition for A, £ and p. introduced in
the Eq.(33). this yvields to Eq.(34).

Definition 2. The Exponential Integral Function. denoted by Ei(xz). is defined

as:
£

[ =dt. Yz <0,
LN -0 - -
El\“’} - -z _, o0, (B R)
1 — lir(n+ {j c-dt+ f e—t—dt} . V> 0.
A £

where the case © > 0, is an extension of the case © < 0 obtained by taking the
Cauchy Principal Value.

The Generalized Exponential Integral Function. denoted by E,(x). is defined by
the integral:

T o—xt
E,(r) = / ‘ﬂ, dt (B.9)
-l "

where p € R, p # 0, 1s @ real non-zero constant.

Theorem 2. If Ei is the Exponential Integral Function defined for all x then:

b
-t
/ %(lt = Ei(b) — Ei(a). Va.b>0.a,b€R (B.10)

@
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—=

Proof First in the case z > 0, via the Eq.(B.8) from Definition(2):
/ g+

T
o Tl

e Fer
ﬁ%[jt ! tf

Ei(b) = — lim
£-a(F

(B.11)

Ei(a) =
then the left hand side of Eq.(B.10) becomes:

ot ot
Jmm-mm:—nm[ f—m /iﬁJ
A =0+ | ] t
—b —a

- —a
4 et et et
= — lim [/———dt%—/——dt = — lim -———dt
£—0+ t t B
L—b —& J
-6 b
e‘ ,I
:/————dt:/‘a—dx
t T
—a a

where the last equality of Eq.(B.12) is obtained by a change of variable —{ = x.
In the case x < 0, applying the first part of Definition(2):

(B.12)

m@—Empi/Tmﬂ/7m

(B.13)

r b A “w R N
€ >
= lim /—w~/ia
g—>—2c t J t
- ]
€ &
/—m+/iﬁ
t . t
L = @

= lim
Eandale o

»
e
:/-—dt
]t
[

and from the Eq.(B.12)and Eq.(B.13) the proof is completed. In the next the-
orem are established two new identities regarding the integrals of Ei function.

Theorem 3. Let Ei be the Exponential Integral Function. and E,, be the Gen-
eralized Exponential Integral Function. then the following equalities holds:

b
Lo / oM (lf: ek + E.i(mb) (B.14)
x n+ Ei{mz) n + Ei{ma)
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formeR, m>0,abeR, a<b, and

b
./m“PEKAmdx:(pil)&fﬂﬂEA—aA%+EKAaﬂ (B.15)
—b177 [E,(—bA) + Ei(bA)]}
fora,be R, a <b.
Proof To proof Eq.(B.14) it is enough to show that
n% In [n + Ei(mz)] = ;L——}-_EIT(?R—I_) % Ei(mz) .
oM 1 b4

"z n+ Ei(ma)

foranyz € R, x>0 Itisa straight forward calculation to show that for any

m € R, and m > 0, 3~ Ei(mz} = “1 Differentiate the Eq.(B.8)with respect
to x, then:
7ot x ot
d e~ e
— Ei(mz) = — ¢ — lim —dt + [ —dt
dx (mz) ] e—0F / t / t
—~ L g
d - . d 20 ¢
¢ e
=— lim [— —dt+ — | —dt
c—0+ | dz t dx/ t
L —mzx ) £ a4 (Bl?)
d [ et
=— lim |— / —dt
g—0t dl‘ t

—mx

e

mr - d e-t emx
i — + — | — ldt} =
et | T dr t T

= - lim
—mx

where in the last equality of the Eq.(B.17) is used the well know formula:

B B
d 1A(x
A%./f@¢nu:aﬂAuy ) / (B.18)
d.
Alx) Ale)
where A(x) = mz, B = = f(x.t) = %—t and the functions A(x). f(x.t) are

continuous with respect the variables, and f(z.t) does not depend on x. By
combining the equalities Eq.(B.16) and Eq.(B.17) the Eq. (B.14) is proofed. To
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show the equality Eq.(B.15) first use an integration by parts which will produce:

b b
1 d
—-p . & —p+1 .

/z Ei(Az)dr = =) / o (z )Ei(Ax)dx
@ “ (B.19)

[a'~? Ei(Aa) — b'~P Ei(Ab)] N 1 i

= T Ye™dx
2y T/

and to complete the proof will be enough to show that

b
/mﬂngAw,;m, — AP R (AL _BlTP R (AR (R 20\
j oy e bt Py Ry ’ AN \eey
a
Via the Definition(2). Eq.(B.9):
E,(—Aa) = / t=Petitdt, B,(—Ab) = / t et gy (B.21)
1 1

A change of variables at = x. respectively bt = x in Eq.(B.21) vields:

1
B, (-Aa) = —— / 2 PeAT

@ DY
o (B.22)
By(~Ab) = oy [ aPe M da
b
by subtracting the equalities in Eq.(B.22) then:
a'"PE,(—Aa) - b' P E,(—Ab)
¢ x b
= /m‘pe‘A"’dzx —/m_’)c”“dm = /w“”e’\xdar (B-23)
a ] @

and by combining Eq.(B.23) and Eq.(B.19) one obtain the equality Eq.(B.15).
The case = < 0, can be treated in a similar manner.
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Abstract

We use the Fredholm type integral equations method to derive ex-
plicit formulas for the Average Run Length (ARL) in some special cases.
In particular, we derive a closed form representation for the ARL of
Cumulative Sum (CUSUM) chart when the random observations have
hyperexponential distribution. For Exponentially Weighed Moving Av-
erage (EWNMA) chart we solve the corresponding ARL integral equation
when the observations have the Laplace distribution. The explicit for-
mulas obviously takes less computational time than the other methods,
e.g. Monte Carlo simulation or numerical integration.

1. Introduction

Cumulative Sum (CUSUM) chart was first proposed by Page (1954) in quality
control in order to detect a small shift in the mean of a production process as
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soon as it occurs, as an extension to Shewhart’s (1931) charts.

In practice, CUSUM charts are widely used in statistical control, to detect
changes in the characteristics of a stochastic system e.g., mean or variance. see
Brodsky and Darkhovsky [1], or Basseville and Nikiforov {2] for an introduction
to CUSUM charts and their applications.

The recursive equation for CUSUM chart designed to detect an increase
in the mecan of chaorved sequence of nonnegative independent and identically

distributed (i.i.d.) random variables &,, is defined as

Xp=Xna+&—a)". n=12., Xy=uz, (1)

where y* = max(0,y). Several cases which lead to this representation are
presented in [1], [2], and [4]. Denote by

Tb:inf{kZO:Xk Zb} (2)

the first exit time of a random sequence X, over the positive level b, with
b >z —a (otherwise 73, = 1).

Let P, and E, . denotes the probability measure and the induced expectation
corresponding to the initial value Xy = z > 0.

The problem studied in here is to find the Average Run Length (ARL) of
the CUSUM procedure defined as a function j(z) = E; 7.

The Exponentially Weighted Moving Average (EWMA) control chart was
first proposed by Roberts (1959) in quality control, in order to detect a shift
in the mean of a process. We consider here the EWMA as an AR(1), ie.. an
Autoregressive Process of order one which is a simple generalization of a random
walk (see [10]). We consider the AR(1) process described by the equation

Xy =pXio1 + 1 (3)

where p € (0.1) and {n;},>1 is a sequence of independent identically distributed
random variables, with X, = 2. As a particularly case of the AR(1) one can
obtain the EWAIA chart in a standard form. by setting in Eq. (3), p=1- X
and n; = Azy. with A € (0, 1).

The problem is to find the expectation of the stopping time

v, =inf{t >0: X, > b}, b>x. 4)

One could use Monte Carlo simulation or numerical integration for both charts
CUSUM and EWAMIA to find the ARL. but it is always desirable to have a
closed form analytical solution to check the accuracy of the results.

The paper is organized as follow. In Section we obtain the ARL for CUSUM
chart in the case of hyperexponential distribution (see Theorem 2.1).

It is well-known that any completely monotone probability density func-
tion can be approximated, by hyperexponential distributions, sometime also
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called mixture of exponentials. For example, Pareto and Weibull are com-
pletely monotone distributions, and so they can be approximated by mixture
of exponentials (e.g., see {7] and [8]). Therefore, one can use the closed form
representation given in Theorem 2.1 as an approximation for the cases when
the random variables £, in Eq. (1) have Pareto or Weibull distributions.

In Section we discuss a closed form representation for E; 14 and present the
results in Thearem 2 9 for the case when the random variables 7, in Eq. (3)
has Laplace distribution. Our result generalize the result of Larralde [9], who
use a different technique and obtain E vy only in the particularly case z = 0
and b = 0. In Section we present several numerical examples.

d [6], that the ARL of the CUSUM chart, j(z) = Eq7,

3 e
Uit

[t can be shown, see [5] an

feon e liadioo £ oh
15 a4 SOLULIONn O ¢

@) = 1+ E {10 < X, < b)j(X1)} + Po{X) = 0}i(0). (5)
If &, are continuous distributed i.i.d random variables with a given d.f. F (z),
and density f(z) = diy), then we can write equation Eq. (5) as a Fredholm-
type integral equation of the form

togeal eoiia
Lol al cyua

b
) =14 O~ o)+ [y +a-ndy (©

0

When &, are countinuous i.i.d random variables with exponential distribution,
then F(x) =1 —exp(—x).x > 0. Eq. (6) becomes

b
i) =1 1l“/ et dy + (1— e™@70")j(0). (7)
0
and it's solution for z € [0, a] has the form (see e.g.[6])

)y =e" (1 +e* ~b)—e*. for rel0.d (8)

2.1 The ARL Fredholm Integral Equation for CUSUM
chart with hyperexponential distributions

In this section we consider the case when the observed random variables £,
have hyperexponential distribution with the d.f.

Fla)=1=3 he ™ (©)
i=1
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n
with A; € R subject to the condition that 3 A;e”** is a distribution function

i=1
on Ry, that is 3° A; = 1. Now, the Fredholm integral equation Eq. (6) can be
i=1
written as follows
b n n
i(r)=1+ / J@ ST N E gy 4 (123 Ae™ 072 j(0), 0<z<a
A o ST JNV)

(10)

Theorem 1.1 The solution of the integral equation Eq. 10 is

glz) =1+ 5(0) + f:[di = 2j(0)]exE=Y  for ze0,a], b<a  (11)

where N
1+ Z die—a;a
3(0) = ——— (12)
3 Aemue
=1
and the coefficients d;, i = 1,...,n, are solutions of the linear system
Ad=M (13)
where
d=[dyds.....d)"

A is the the non-singular matrix

D — Mi e % Njabe 18D — M| ,e” 2% — \ja1e7 2% A1 D
— Mo e 8 doane” 1% A oD D~ My ,e7 2% — Agaobe™ 24D

~Mpne 1% Xnone % 1%A D —Mp ne” % — ApaeT %A, D

—My e %% — Njae n A, 1 D
—Mg pe” 0% — dppe ™ %4, o D

(1)
D= M ne™®n% = Ayabe™ 22D
and

M=[Mfl - e™)D +My . Aol = €7D + Mo Al = e7") D+ M

n
with D = 3" Ae™ ™,

i=1

My, = (1 - (’,—b(yk) Ak — ApOik Z AT A L (15)

=1
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and
(oj—ag)b_p .
Aig = “amen  LFEK
' b, 1=k

Proof. For 0 < x <a and b < a Eq. (10) can be written as

jlxy =1+ Zdie“i(”_a) +(1- Z/\ie"o“(a_x))j(O), 0<z<a (16)
i=1 i=1

where
b
di = / Jy)hiae™¥dy, i=1,..,n. (7)
J0o
or
j(x) = 14+35(0) + 3 _(di — Xij(0)e* =™, 0<z<a. (18)
i=1
From Eq. (16) at x = 0 we obtain j(0) given by Eq. (12)
To evaluate the coefficients dy for k = 1,2, ..., n we substitute Eq. (18) in

Eq. (17) and obtain

ki3 n
di = [l + ‘](0)})\]\ (1 — eAbO") 4 Ap o Z die7 A — j(O)/\kak Z e MCA;
=1 i=1
(19)

for k= 1,2,....n. where

b

SC TR LI | .
AL.k:/eW—““ydy:{ Taman 17K

b, 1=k
0

Inserting the expression for j(0) given by Eq. (16) in Eq. (19) we obtain a linear
svstem of n equations with di unknowns k& = 1,2,.. ., n:

n n
A Y Ajem e =y (1 7 e—b“k) 3 el 4 (1 +3y (11e“°L“) [(1 - e—""k) Ak
i=1 i=1
n
“/\A:akz /\le’a‘aAi.k}

i=1
n i n
+ Apag (Z )\i(?—“‘a> (Z (I,e*““’f\tk) = A (1 - e”b“k) Z Ao xia
i=1 i=1 i=1
rn " n
+ <l + Z (11(%_““1) My n + Mo (Z /\le_"‘“> (Z (11670““44lv;¢)
=1 i=1 i=1
k=1.2....n
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where

n
Mg, = (1 — e‘bak) Ak — ApQg Z/\leﬁaiaAiik
i=1
or
dy (D — M, e 1% — Alalbe“”“D) + doy (_1\/[1_'16—&2«1 - /\1&[64“20/‘2,1 D) +
+dn (—M1ne™ %% — Aae” 84, 1 DY = Ay (1 —e 1) D+ My,

dy (~ Mz pe~1® — Azaze™®12A1 9 D) +dy (D — Mz pe™*2% — Agagbe™a29D) +
+dn (“Mz,ne"a"a — Aqage” %A, 5 D) = Ao (1 — e_b(“"’) D+ Mo,

di (~Mnne™ %1% = Apane™®1%A41 D) +dz (—Mpne ™ ®%® = Apane™ 2% Ay . D) + ...
+dn (D — Mpne %% — Apanbe @n8D) = Ap (1 —e7b9n) D4 My

(20)
n
with D = 3~ X;e”*%, and the proof of Theorem 1.1 is completed. O

=1

2.2 Solution for the ARL Fredholm Integral Equation of
EWMA chart with symmetric Laplace distributions

We analyze now the case of EWMA chart (see Eq. (3)) where n; ~ Laplace(0, 1).
Recall that the density function of 1, is given by f(z) = 5 e~ 1.
It is well known that (e.g.. see 5]} the function h(x) = ]E vy is a solution of

the following integral equation

h(x) =1+ E, [I{X1 <b}h(X1)]. (21)
Then it can be shown that Eq. (21) becomes the following integral equation
b +x
1 ; 1
hiz) =1+ i/h(u)e”““d,u + 3 / h(pz — y)e Ydy. (22)
px o

The main result in this section is the following

Theorem 2.1 For any 0 < p < 1 and 0 < x < b the solution of the integral
equation Eq. (22) is

3 b
h(z) = Euv = 2¢¥ — ¢y (1 +b) - p° [2(‘(’ - (1 + b+ 7)}

ad St [HEER) > st [p- B

k! k!
k=3.5.7... h=1.6.8...
x £k 2 x *
+acy jr+ Z p"”Pl(k)E + ~p2?- Z p"Po(k')—E
k=3.5.7 k=4.6.8

(23)
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with the constant ¢; given by

o0
1=/~ 3 Pk)
k=4,6,8

o = 08 (24)
(p=1)+ ¥ (k)
k=35.7...
where I'(a, 2) f ta~le~tdt denotes the Incomplete Gamma function, and
(54) (%)
Pi(k) = (1—p2), Pk =] (1-0""77) (25)
m—1 m=9

Proof. It can be shown that Eq. (22) can be reduced to the following second
order differential equation

h'(x) = p*h(z) — p*h{pz) — p* (26)
We try to find a series solution for Eq. (26) of the form

20

. cpa®
k «
h{x) = Z " (27)
k=0
Then from Eq. (27) j(0) = ¢ and from Eq. (26) at x = 0, R (0) = —p?. Tt can
be shown also that the coefficients ¢, satisfied the non-lincar recurrent equation
Cryz = p2(1—pF)ep for k>1 (28)
and using the recurrence Eq. (28) we may find that
(%)
Cp = —p"" (1 - pz"“z) for k = 4.6.8,...
m=2 «
(554 29
Cp = (:1/)k_1 H (l - /)2m-‘1) for k=3.5.7....
m=1
With the coefficients ¢; and ¢y given by
> =
p(l=p*) = 3 /)”‘Pz(k)
o = b3, with 0 < p< 1 (30)
(p—-1)+ z /)}‘Pl(l\)
k=TT
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2
co = 2% — c1(1+ b) — p? [er- <1+b+ %)}

e > 31)
! L'k b : . (
RS pk-lpl(k)[ ( :'1, )l ¢S Aem [2_ I‘(k:‘l,b)}
k=357, : k=4,6.8,. :
The solution for the integral equation Eq. (22) is
x I e
h(z) = Ezvp = co + 1 [I'f' b Pk‘lpl(k’v)—IJJ + [—p‘-i!— - . {)"Pz(k)’;g
k=3.5,7... k=4.6.8
(32)

where the constant ¢ is given by Eq. (30), and the proof of Theorem 2.1 is
completed.

3. Comparisons of the results with numerical
integration and Monte Carlo simulations

In this section we present the scheme to evaluate numerically the solutions of
the integral equation Eq. (10) (see also Eq. (6)).

By elementary quadrature rule we can approximate, in general, the integral
b

[ f(y)dy by a sum of areas of rectangles with bases b/m with heights chosen as
0
the values of f at the midpoints of intervals of length b/m beginning at zero.i.e.
on the interval [0, ] with the division points 0 < a; <az <... <ap <band
weights wy = b/m > 0, we can writing
b . .
b 1
y)dy = wipflag) with ag=—\{k—=1}, k=1.2,...m.
/f(./) y~ Y wiflay) ak m( 2),
0 k=1
If j*(x) denotes the approximated solution of j{z) then the last term in the
Eq. (6) can be expressed as

ny
Zwkj*(ak)f(ak%—a—ai). i1=1,2,...m. (33)
k=1

and the integral equation Eq. (6) becomes the following system of m linear

*

equations in the m unknowns j*(a1). j*(az2).. ... 7" (am)

j(ay) = 1+ j (@) [Fla —ay) + w1 f(a)] + ﬂ-(iz wii*(ar)flax + a - ap)

J*(a2) =1+ j*(a1) [Fla —a2) +wi flar +a—a2)] + ki wii*(ar)flan +a — az)
=2

m

F*lam) =1+ (a) [Fla —am) + wi f{a1 +a —am)] + kgz wij*(ax)flag +a —am)
i (31)
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For numerical implementation is preferable to writing the linear system Eq. (34)
in matrix form as

Joxi = 1 + Roxm Jmx1 OF (Im - Rpxm) Jmx1 = lmxt (35)

where
J*(ar) 1
j*(a2) 1
mel = . -,1m><1 = . (36)
J*(am) 1
F(a—a1) + w1 f{a) waflag+a—a1) .. wmf(aem+a=a1)
Fla —a)) + w1 flay + a —a2) wa f(a) . wmflam +a—a2)
R'mxm: . -
Fla —am)+wi flar +a—am) waflaz+a—am) --- wm f(a) ]
(37)
and I,, = diag(1,1,...,1) is the unit matrix of order m. If there exists

(L — R, xm) ' then the solution of the matrix equation Eq. (35) is

—1
‘]mxl = (Inl — Rman) 1171)(1

3 [ 3 g 3 o o ;¥ %
Solving this set of equations for the approximate values of 5*(a1). 5" (a2}, -+
G {@m), we nay approximate the function j{z) as

. b b, L
() = L+ 57 (@) Fla— ) +y_wkj*(ai)flax + a — z) withw, = ;a"d W=\ 2
= (38)
Numerical Examples We denotes by j*(x) the approximated solution.
respectively by j(x) the exact solutions, and define here the relative errors as
er =| j(w) = j* (@) 1 /ix).
For some values of a. b and the number of divisions m specified several
numerical examples are presented in Table 1 and Table 2.

Mixture of two exponentials
For mixture of two exponentials the integral equation Eq. (6) is

=1

b 2 2
ey =1+ / ) Y e ey o (1 - ine‘“*"“-“>>j<0> (39)

0 =1
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The coefficients My, , forn =2 and k = 1.2 are

ML'-’ = /\1 (1 — (?,Abal) — )\10&1 Z/\l,e—'ﬂiaALl

i=1

eloa— ab __q
)\1 (1 - e_ba‘) - )\1&1 lr/\leyalab + )\ge"‘”“ ( \]
) L /3 g

/
l\.
|
Q
i

Mss = /\2 (1 - e—ba-)) -~ Ag0p Z )\LG_Q‘(LAL’Q

i=1
elan—ab _q
= )\2 (1 b e—b()(g) - )\20&2 ‘:)\16_0“1 (—————‘”—) + )\ge-azabil
o] — Qp
with
'((n——oz-;)b -1 e(ag~al)b ~1
Al.l = As9 = b and Al_g = (‘P‘——_——_‘) ) Az = (———"—————)
' . ai—ar . o

The solution is
2 2
i) =14 ) det e (1 -2 A<>> i(0) (41)
i1 =1

with

AL

M 2

[

(145 gemae)
\ /

i
—

J(0) = (42)

L
2
LY
3 nemee
=1

and the coefficients d;, and d» are obtained as the solutions of the linear system
Eq. (13).

3 [D — A’[LQP-“‘"’ - Alchb(?'nl(LD] + d') [—]\/[1,26_02(1 - /\1&[€~(’2(LA2_1D]
=AM (1—e ) D+ M s

&

{ [\/[’_)‘26‘—(”” . )\2(12()«‘(&[“[41_21)1 + d”_’ [D - A[{l_?p——aga _ /\’_)a'_)'b(f_(w“Dl
2o (

1- e*b“l) D+ Mo
(43)
2
with D =5 Ae™ ™%
i—
Numeri('zil results are presented in Table 1, for the case m = 300 division
points.
Mixture of four exponentials
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Table 1: Comparisons with the numerical results for mixture of two
exponentials

Ay = Ay = 0.5, A1 = 0.3, Ao = 0.7,
xz =0 oy = 1.5, ag = 2.8, oy =1.1,00 =35

a b J(z) Jj(z) (%)  jlz) (@) (%)
25 05  175.965 175.745 0.12 89.995 89.914 0.09
3.0 1.0 799.111 797.115 0.24 270.156 2069.666 0.18
35 15 3597.65 3584.14 0.37 811.241 809.023 0.27
40 20 161582 16076.3 0.5  2438.48 242955 0.36
45 25  72504.7 720335 0.64 7332.76 7298.95 0.46
50 3.0 325183 325095 0.02  22050.8 21927.1 0.56

55 3.5 1.45801x 105 1.45782x 10° 0.01  66299.6 658551  0.67

In the case of mixture of four exponentials, the integral equation Eq. (6)
becomes

b

4 ‘ 4
) =1+ / i)Y Naer Eme gy (1 - the*“*“ﬂ)]‘(m (44)

0 i=1 i=1

and the coefficients My, for n = 4 and k = 1,2, 3.4 given by Eq. {15) and
Ay =000 = 1....4.

Table 2: Comparisons with the numerical results for mixture of four
exponentials

a=23.b=1.5,
a; =05. ay=07.03=11las=13
x ) ) & (%)
0.0 15.614 15.594 0.129
0.5 15.240 15.221 0.128
1.0 14.702 14.683 0.127
1.5 13912 13.895 0.125
2.0 12729 12.714 0.121
2.5 10911 10.902 0.113
3.0 8.061 8.053 0.092
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The solution is

4 4
j@) =1+ die®E + <1 = Aie—m(a*ﬂ) 3(0)
i=1

i=1

=1 . dy, da, d3 and dy are the solutions of the linear
algebraic system Eq. (13)

For the number of division points m = 600, we present in Table 2 several
numerical results in the case of mixture of four exponentials. In Table 3 we
present the results of Monte Carla simnlations for ARL when the EWMA chart
is used with symimetric Laplace distributed random variables, and compare it
with the closed-form expression given by the Eq. (23) in Theorem 2.1.

1o

Table 3: E, v, for z = 0.3 and different b and 4 with b > r. Comparisons
with MC simulations

P b=04 b=10.6 b=0.8 b=10

ARL MCsim ARL MCsim ARL MCsim ARL  MCsim
01 3.090 3.090 3769 3.771 4.594 4.591 5.596 5.598
0.2 3.197 3.192 3.893  3.898  4.732 4.730 5.745 5.745
0.3 3.311 3313  4.025 4.027  4.877 4.878 5.896 5.898
0.4 3.442 3.444 4.176 4.174 5.041 5.042 6.065 6.060
0.5 3.604 3.602 4.361 4.363  5.243 5,245 0.272 6.281
0.6 3.819 3823 4.609 4.606 5.513 5.523 6.552 6.568
0.7 4.134 4133 4.973 4970 5914 © 5924 6.975 6.982
0.8 4.668 1668 5.594 5.599  6.610  6.625 7.726 7.716
0.9 5.901 5.901 7.038  7.052 8.248 8.240 9.537  9.536

4. Conclusions

We have used the integral equations method to obtain closed form analyti-
cal expressions for the ARL of the CUSUM and EWMA control charts, when
the observed random variables have hyperexponential distribution for CUSUM
chart. respectively symmetric Laplace distribution for EWMA chart. We com-
pare our analytical results with the numerical one and the Monte Carlo simu-
lations. The methods are consistent with a high level of accuracy up to 98%.
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