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ABSTRACT
This paper presents prediction intervals for difference between two future sample
means when the distributions are non-normal distributed with missing data. We imputed

values for the missing data in a random sample {X = 1,..,,m]} and {Xz,,.;i =1,...

L ,mz} based
on the random hot deck impuration method. The prediction intervals considered are non-
adaptive prediction interval (PI) and the adaptive interval that incorporates a preliminary test
of symmetry for the underlying distributions (P, 4 1f the preliminary test fails to reject
symmetry for both distributicns, the adaptive prediction interval uses the non-adaptive
prediction interval; otherwise, it uses the non-adaptive prediction interval to the log-transformed
data, then the interval is transformed back. Simulation studies show that under imputation for
itera nonresponse, the adaptive prediction interval that incorporates the test of symmetry

cortains the difference between two future sample means better than the non-adaptive
prediction interval.

Keywords: coverage probability, imputation, missing data, adaptive prediction interval,
preliminary test.

1. INTRODUCTION

The problem of calculating prediction
intervals for the diffzrence between the means
of wo independent normal dist-ibutions is an
important rescarch topic in reliability and quality
control. For instance, in the manufacturing
preblem case, the researcher may need to use
a past sample to predict the difference between
two future sample means. Several recent
papers have dealt with a prediction interval
to contain the difference between two future
sample means. A predicdon interval to contain
the mean of a single future sample was
discussed by Hahn [1}. A recent paper by

Browne [2] who considered the related problem
of evaluating the probability of a future mean
difference having the same sign as a past mean
difference. Hahn [3] proposed procedures for
constructing a prediction interval to contain
the difference between two future sample means
for two independent normal populations for
the casc of unequal population standard
deviations by applying a confidence interval
proposed by Welch [4]. This prediction
interval is significant in the sense of its
application to a claim of product superiority.
Hahn [3] quoted that the application of this
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Abstract

Motivated by the recent work of Schechtman and Sherman [The two-
sample ¢-test with a known ratio of variances. Statistical Methodology
4, 508-514, (2007).], we investigate, in this paper, a new exact confidence
interval for the difference between two normal population means when
the ratio of their variances is known. This is an extension of the case
of equal variances where a confidence interval is constructed using an
exact t-distribution, as opposed to the case of unequal variances with
an approzimate confidence interval. We derived analytic expressions to
find the coverage probabilities and expected lengths of two confidence
intervals, the Schechtman-Sherman confidence interval and the Welch-
Sasterthwaite confidence interval, in comparison with each other. Monte
Carlo simulation results indicate that the new confidence interval for the
difference between two normal means gives a better coverage probability
(and a shorter expected length) than that of she well-known Welch-

Sasterthewaite confidence interval when a known ratio of their variances
is large.
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ABSTRACT: Unit nonresponse and item nonresponse in sample surveys are a typical problem of nonresponse which can
be handled by weizhting adjustment and imputation methods, respectively. The objective of this study is to compare the
efficiency of confidence intervals for the difference between two means when the distributions are non-normal distributed
and item nonresporise occurs in the saraple. The confidence intervals considered are Welch-Satterthwaite confidence interval
and the adaptive irterval that incorporates a preliminary test of symmetry for the underlying distributions. The adaptive
confidence intervals use the Welch-Satterthwaite confidence interval if the preliminary test fails to reject symmetry for
the distributions. Otherwise, the Welch-Satterthwaite confidence interval is applied to the log-transformed data, and then
the interval is transformed back. Simulation studies show that the adaptive interval that incorporates the test of symmetry
performs better than the Welch-Satterthwaite confidence interval when we imputed values for the missing data in two random

samples based on the random hot deck imputation method.

KEYWORDS: coverage probability, imputation, random hot deck method, Welch-Satterthwaite confidence interval

INTRODUCTION

The problem of calculating confidence intervals for
the difference between the means of two independent
normal distributions is an important research topic in
statistics. The common way is to use the Welch-
Satterthwaite confidence interval vhen the population
variances are known to be unequal!. Mizo and
Chiou? compared three confidence intervals for the
difference between two means when both normality
and equal variances assumptions may be violated.
The confidence intervals considered were the Welch-
Satterthwaite interval, the adaptive interval that incor-
porates a preliminary test (pre-test) of symmetry for
the underlying distributions, and the adaptive interval
that incorporates the Shapiro-Wilk test for normality
as a pre-test. The adaptive confidence intervals use
the Welch-Satterthwaite interval if the pre-test fails to
reject symmetry (or normality) for both distributions.
Otherwise, the Welch-Satterthwaits interval is applied
to the log-transformed data and the interval is trans-
formed back. Their study showed that the aclaptive
interval with a pre-test of symmetry has best coverage
among the three intervals considered. The aim of this
paper is to generalize Miao and Chiou?’s confidence
intervals to the missing data case.

Incomplete or missing data in sample surveys

WwWWW.scienceasia.org

generally occurs in two ways: unit nonresponse and
item nonresponse®. Unit nonresponse occurs if a unit
is selected for the sample, but no response is obtained
for the unit. Weighting adjustment is often used to
handie unit nonresponse. Item nonresponse some-
times occurs for certain questions; either the questions
that should be answered are not answered or the
answers are deleted during editing. Item nonresponse
is usually handled by some form of imputation to fill
in missing item values. Brick and Kalton* list the
main advantages of imputation over other methods for
handling missing data. First, imputation permits the
creation of a general purpose complete public-use data
file with or without identification flags on the imputed
values that can be used for standard analyses, such as
the calculation of item means (or totals), distribution
functions, and quantiles. Secondly, analyses based on
the imputed dzta file are internally consistent. Thirdly,
imputation retains all the reported data in multivariate
analyses.

As there are a number of imputation methods,
it is not immediately clear which method should be
chosen, especially when an imputation method may
be best in one respect but not in others’. Qin et al®
proposed the random hot deck imputation method to
impute the missing values for confidence intervals
for the differences between two datasets with missing
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Abstract

We derive integrable solutions for the two-dimensional (2-D) re-entry
dynamical equations of motion of a space vehicle, under the assumptions
of standard atmospheric model. It is desirable to have analytical solutions
for this important and practical problem which arise during the atmo-
spheric re-entry phase. Therefore, our solution can be effectively applied
to invesrigate and control the rocket flight characteristics. By setting the
initial conditions for the speed, re-entering flight-path angle, altitude,
atmosphere density, lift and drag coefficients, the nonlinear differential
equations of motion are linearized by a proper choice of the re-entry
range angles. By carrying out the closed-form integration, we express
the solutions with the Exponertial Integral. and Generalized Exponen-
tial [utegral functions. Theoretical frameworks for proposed solutions as
well as, several numerical examples, are presented.

1. Introduction

*
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2000 AMS Mathematics Subject Classification: 76G25
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Since the beginning of the space flizht, one of the most important aerodvnamic
rroblem encountered in astronautics is the return of satellites and space vehicles

¢ Key words: analytical solutions, Exporential Integral, Generalized Expouential [utegral.
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Abstract

We use the Fredholm type integral equations method to derive ex-
plicit formulas for the Average Run Length (ARL) in some special cases.
In particular, we derive a closed form representation for the ARL of
Cumulative Sum (CUSUM) chart when the random observations have
hyperexporential distribution. For Exponentially Weighed Moving Av-
- etage (EWMA) chart we solve the corresponding ARL integral equation
when the observations have the Laplace distribution. The explicit for-
mulas obviously takes less computational time than the other methods,

e.g. Monte Carlo simulation or numerical integration.

1. Introduction

Cunlative Sura (CUSUM) chart was first proposed by Page (1954) in quality
control in order to detect a small shift in the mean of a production process as

Key words: control charts, integral equations. analytical solutions.
2000 AMS Mathematics Subject Classification: 43805
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Abstract

The purpose of this paper is to propose a new variable for the generzlized confidence interval method to estimate the
confidence interval of the lognormal mean. In order to evaluate the efficiency of this new method, here called t-generalized
method, a simulation study was conducted to examine and compare the coverage probability, interval width, and relative
bias of this new method and three other methods, the generalized confidence method of Krishnamoorthy and Mathew, the
Modified Cox method, and the Angus’s conservative method. The results show that at small sample sizes with large
variances, only the t-generalized method and generalized confidence method of Krishnamoorthy and Mathew provide
coverage probabilities greater than the nominal level. The t-generalized method is more accurate with a shorter confidence
interval than the old generalized confidznce method in the case of small sample sizes with large variances.

Keywords: coverage probability, interval width, relative bias, generalized confidence interval, modified cox,

Angus’s conservative, t-generalized

1. Introduction

The lognormal distribution is a skewed distribution
whis is widely used for analyzing the data sets where most of
the observations are small, but with a few very large values.
Such data, for examp.e, may be the costs of a hospital stay,
the incomes of individuals, the height of flood in a river, the
amount of Hartmonelly hyaline per gram of soil.

Let X be a random varlable having a lognormal dis-
tribution, ~ lognormal( 4, O' ). Then ¥ = log(X) has a
normal distribution, N( 4, c? ). The density of X is
fGrsm,0%) = —— exp(~(nx - u)*/26%))

xo~\ 27

0<x<00,0<0 <00,

The mean and varlance of X are E(X) B=exp(u+0o’/2)
and V(X) = (exp(c?)-1) expQu+o?), respectively. The

*Corresponding author.
Email address: tks@kmutnb.ac.th

most commonly used method for obtaining the confidence
limits for 6'is the so-called na ve transformation method.
This method constructs a confidence interval for exp(w)
which is the median of X. The result of this method is toler-
ably accurate for @ when ¢ is relatively small, but becomes
intolerably inaccurate as o increases. The accuracy gets
worse as the sample size increases. In 1957, Aitchison and
Brown (Land, 1972) suggested an approximate confidence
interval method or transformation method which should con-
verge to the exact limits only when the sample size becomes
infinitely la-ge. Zhou and Gao (1997) compared the cover-
age probabilities of from the na ve transformation method,
the Cox method, the Angus’s conservative method and the
parametric bootstrap. The simulation results showed that
the parametric bootstrap method was the most appropriate
method for small variances, whereas Angus’s conservative
method always gave coverage probabilities more than the
nominal level. After Weerahandi (1993) developed the gener-
alized confidence interval, Krishnamoorthy and Mathew
(2003) compared the upper limit of the 95% confidence
interval of In @ from this method with the Land formula
and the parametric bootstrapt method. The result showed
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ABSTRACT

An important part of statistical data analysis is hypothesis testing. For example, we know
the probabil ty distribution of the characteristics corresponding to a certain disease, we have
the values of the characteristics describing a patient, and we must make a conclusion whether
this patient has this disease. Traditional hypothesis testing techniques are based on the
assumption that we know the exact values of the characteristic(s) = describing a patient. In
practice, the value Z comes frem measurements and is, thus, only known with uncertainty:
Z # z. In many practical situations, we only know the upper bound A on the (absolute value

of the) measurement error Az i - In such situation, after the measurement, the only
information that we have about the (unknown) value x of this characteristic is that z belongs
to the interval [ — A, T + A].

In this paper, we overview different approaches on how to test a hypothesis under such interval
uncertainty. This overview is based on a general approach to decision making under interval
uncertainty, approach developed by the 2007 Nobelist L. Hurwicz.

Keywords:

1 Formulation of the problem

Statistical hypothesis testing is important. An important part of statistical
data analysis is hypothesis testing.

Examples. For example, we know the probability distribution of the character-
istics corresponding to a certain disease, we have the values of the characteristics
describing a patient, and we must make a conclusion whether this patient has this
disease.

Another example is when we want to check whether a newly proposed treatment
is effective against a disease. In this case, we have a distribution corresponding to
un-treated patiznts, and we want to check whether the values corresponding to the
treated patients fit within the same distribution.

*Corresponding author: hunguyen@nmsu.edu
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ABSTRACT

Motivated ky the recent work of Schechtman and Sherman [(2007). 'The two-sample t-test
with a known ratio of variances. Statistical Methodology 4, 508-514], we investigate, in this
paper, a new exact prediction interval on the difference between two future sample means
with a known ratio of variances. This is an extension of the case of equal variances where
a prediction interval is constructed using an exact t-distribution, as opposed to the case of
unequal variances with an approzimate prediction interval. Asymptot'c coverage probability
and expected length for our proposed prediction interval are derived.

Monte Carlo simulation results indicate that the new prediction interval for the difference
between two future sample means gives a better coverage probability than the existing Hahn
prediction interval, as well as & shorter expected length.

Keywords: Known ratio of var.ance; Prediction interval; Two future sample means

1. Introduction

Prediction interval has played an important role in reliability and quality con-
trol. Hahn [6] and Cheung et al. [3] gave many applications in quality control that
require the construction of two-sided prediction intervals, one-sided simultaneous
prediction intervals and simultaneous prediction intervals for all pairwise differences
among the means. The prediction interval for the mean of a single future sample
was first discussed by Baker [1], and later by Hahn, see [5] and references therein.
Hahn [6] also examined the prediction interval on the difference between two future
sample means. Cheung et al. [3] discussed simultaneous prediction intervals, based
on [6], for multiple compariscns with a standard. In this paper, we re-examine the
prediction interval for the difference between two future sample means of Hahn [6]
with a known ratio of variances. Schechtman and Sherman [11] described “a situa-
tion when a known ratio of variances arises in practice when two instruments report
(averaged) response to the same object based on a different number of replicates.

*Corresponding author: snw@kmutnb.ac.th
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Abstract, Two generalizations of the Durbin-Watson Statistic d, for resting that the serial correlation,
in a given univariate normal regrassion model, is zero, to its multiveriate counter part, are proposed.
In the univariate case the moments of d are obtained in terms of generalized gamma functions. Our
methodology is based on the generalized quadratic form of the central Wishart distribution.
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1. Introduction
For the univariate normal linear regression model
Y=XB+e,e~N(0, o2 (D

where Y is an n component (column) vector, 8 has g compcnents, X is n X ¢ and of rank
g <n, o? is unknown, the Durbin-Watson statistic d is defined as follows,

(Y -XBY(Y-XpB) = (B- @)’X’X(ﬁ -B)+Y' (I -XX'X)X)Y
= (B-BYX'X(B-B)+Y'QQ'Y,
B =(X'X)"1X'Y and Q'Q =1, Q is n x m, m=(n-q) matric of rank m < n. It follows that
Y'QQ'Y =f£'f, )

Email qddress: gupta@bgsu.edu (A. Gupta)

http://www.ejpam.com 435 (c) 2010 EJPAM All rights reserved.
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ABSTRACT

In many practical situations, there exist regulatory thresholds: e.g., a concentration of certain
chemicals in the car exhaust cannot exceed a certain level, etc. In this paper, we describe
how to make accept/reject decisions under measurement or expert uncertainty in case of

regulatory and expert-based thresholds — where the threshold does not come from a detailed
statistical analysis.

This paper expands our conference paper [23].

Keywords: Hypothesis testing, Interval data; Regulatory constraints

1. Hypothesis testing: a general problem

In many practical situations, it is desirable to check whether a given object (or
situation) satisfies a given property. For example, we may want to check whether a
patient has flu, whether a building or a bridge is structurally stable, etc.

In statistics, this problem is called hypothesis testing: we have a hypothesis —
that a patient is healthy, that a building is structurally stab.e — and we want to test
this hypothesis based on the available data. This hypothesis is usually called a null
hypothesis, meaning that:

e if this hypothesis is satisfied then no (“null”) action is required,

o while if this hypothesis is not satisfied, then we need to undertake some action:

cure a patient, reinforce (or even evacuate) the structurally unstable building,
ete.

“Corresponding author: vladik@utep.edu
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Statistical Estimation of Asset Pricing in Case of Heavy-
Tailed Distributions
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ABSTRACT

Under the classical assumption that the second moment of an option payoff variable is finite,
the empirical estimator of option pricing has already been well studied in the literature.
However, the result is not applicable when the option payoff variable follows any distribution
with infinite second moment, which is a frequent situation in practice. In this paper we
propose a new estimator and confidence interval of a contingent claim pricing which is
applicable in the case of heavy-tailed distributions.

Keyword's: Asset pricing; Option pricing; Wang’s ¢istortion function; Heavy-tailed distribution;
Hill estimator; Weissman estimator

1. Introduction

In a stock market, an option is a contract between a buyer and a seller that
gives the buyer of the option the right, but not the obligation, to buy a specified
stock on the option’s expiration date denoted by T, at an agreed price, the strike
price denoted by K. An option has the objective to transfer a risk from one part to
another, against a specific payment.

The value of an option at time 7T is called the payoff of an option which is

X(T)=(S(T) - K)" = max{S(T) - K, 0},

where S(T') is the price of the stock at tim= 7' It is so because, if S(T') > K, then
the owner of the option only needs to pay K for something worth more. He can
then exercise his exercise his right, buy y stocks at price K each (if he has paid for

* Corresponding author: wararit@mathstatscituacth
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Abstract

Natural numbers originated as a way to describe the result of counting procedures. In quantum physics,
the results of counting are probabilistic, so, in general, real counting leads to a randomn natural number —
a probability distribution on the set of all natural numbers. From the practical viewpoint, events with a
very small probability (smaller than some threshold ) cannot occur. Therefore, it is reasonable say that a
random natural number represents an integer n if the probability of n is > £, while the probability of every
other number is < ¢. For thus dzfined physical natural numbers, we analyze how their properties differ
from the proper:ies of the standard mathematical natural numbers. Specifically, we analyze the following
natural question: if a represents «« and b represents m, what are the possible representations for a 4 b7
(©2010 World Academic Press, UK. All rights reserved.

Keywords: integers, quantum physics, probabilistic uncertainty

1 Formulation of the Problem

Not all natural nambers are physically meaningful, Natural numbers originated from the need to
count real objects. Reasonably small natural nurabers can indeed be interpreted as the corresponding numbers
of objects. However, very large abstract integers, integers like 1019 which are larger than the number of
particles in the Universe, cannot be thus represented. A natural question is: what will happen if we only
allow physically meaningful natural numbers? This question was analyzed in the past from the philosophical
and logical viewpoint; see, e.g., [1, 2, 3, 9, 10].

In this paper, we analyze the same question from a more physical viewpoint; in this analysis, we follow
ideas from [4, 5, 6, 7, 8].

2 Towards a Definition of a “Physical” Natural Number

Towards a definition of a physical natural number. It is reasonable to identify, e.g., number 1 with
situations in which the result of a counting procedure can be 1 but cannot be anything else.

Real physical natural numbers are probabilistic. The formalization of the above idea is complicated
by the fact that according to quantum physics, all predictions are probabilistic.
In particular, for every physical counting procedure applied to a physical state, the result is, in general,
a random natural number - in other words, a probability distribution on the set of all natural numbers in
which can get different values ¢ with different probabilities p(i) > 0 (32 p(i) = 1).
12

In these terms, how can we describe the idea that some values are possible and some are not?

*Corresponding author. Email: snw@kinutnb.ac.th (8. Niwitpong)
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ABSTRACT. Recent works of Diebold and Kilian (2000) and Niwitpong (2007, 2009)
indicated that a one-step-ahead predictor for an AR(1) process can be improved by using
the preliminary unit root tests. This paper extends these mentioned concepts to the
multistep-ahead predictors of a Gaussian AR(1) process with additive outliers. The
Joilowing predictors are considered: the standard predictor, the predictor following the
Dickey-Fuller unit root test, and the predictor following the Shin et al. (1996) unit root
test. The relative efjiciencies of all predictors based on the prediction mean square error
are compared through simulation studies. Simulation results have shown that the unit root
test can improve the preciseness of the multistep-ahead predictors for a near
nen-stationary AR(i) process with additive outliers.

Keywords: AR(1) Process; Additive Outliers; Predictor; Unit Root Test

1. Introduction. Outliers, or aberrant observations, in a time series can have adverse
effects on parameter estimation including prediction. Fox (1972) proposed two parametric
models for studying outliers in a time series. He defined additive outliers (AO) and
innovations outliers (I0). In this paper, we focus solely on the additive outliers because
these outliers are more hurtful than innovations outliers (2001). Let {X,;£=2,3,..,n} be

the first-order autoregressive process, AR(1), satisfying
X, = o p(X,, — ) +e, (1)
where p is the mean of the process, p is an autoregressive parameter, p € (~1,1), and

¢,1s a sequence of indepsndent and identically distributed N(0, ) random variables. If

p =1, then the model (1) is called the random walk model and hence non-stationary. The
random walk model is given by

X =X_ +e,. 2)
However, if l p| <1, then it can be shown that the process is stationary. For a near
non-stationary process, i.c. |p| — 1, the mean, variance and autocorrelation function of this
process are not constant through time. An observed time series Y, has an additive outlier at

time 7 ofsize & ifitsatisfies Y =X, +8I", where I is an indicator variable such
that I =1 if r=T,and 1" =0 if r=7T.
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~ Prediction Intervals for an Unknown Mean Gaussian
AR(1) Process F ollowing Unit Root Tests

Sa-aa: Niwitpong
Department of Applied Statistizs
King Mongkut’s Uiliversity of Technology North
Bangkok
Bangkok, Thailand
snw@lkamutnb.ac.th

Abstract——This Paper presents fwo new onc-step-ahead
prediction intervals for an unknown mean Gaussian AR(1}
process. We propose the simple prediction interval based on the
residuals model, PI,, and the prediction interval following the
unit reot tests, Pf 7+ The unit root tests applied in this paper are
the Dickey-Fuller unit root test, the Phillips-Perron unit root test,
the weighted symmetric unit rooet test, and the Eliott-
Rothenberg-Stock unit root test, The coverage probabilities of all
prediction intervals are derived, The performance of the
proposed prediction intervals is assessed through Moente Carlo
simulation studies. Simulstion results have shown that all
prediction intervals have ndnimem coverage probabilities 9.95
for all the autoregressive parameter valucs. Moreover, the
expected lengths of prediction intervals pr 7 are shorter than that

of a prediction interval PI, wheu the autoregressive parameter
value is close to one,

Keywords-AR(l); Unit Root

Test; Prediction Interval;
Preliminary tess; Residual Model

1. INTRODUCTION

Recently, there has been increasing interest in constructing
prediction intervals for ay autoregressive process, see for
example the standard textbooks of Box et al. [1] and Wei {2].
The conditional prediction interval for ap autoregressive
moving average mode] was proposed by de Luna [3]. However,
this prediction interval docs not has a minimum coverage
probability at the nomina confidence level for small and
moderate sample sizes. Hulkos and Kevork [4] proposed a
prediction interval for g stationary AR(1) process with an
almost unit root by considering the prediction interval based on
the random walk model when the autoregressive parameter, p,

is close to one. They found that their proposed prediction
interval has less Coverage probability than the nominal
tonfidence level when P is close to one. Several authors also
used the bootstrap methods for calculating prediction intervals,
see for example Kim (51, [6), [7]), Alonso et al. ([8], [9]) and
Clements and Kim {10] and references cited therein. Although
prediction intervals based on bootstrap methods are easy to
tonstruct, some of these prediction intervals have coverage
brobabilities less than the nominal level |-g , see the

Wararit Panichkitkosolkul

Department of Applied Statistics
King Mongkut's University of Technology North
Bangkok
Bangkok, Thailand
wararit@mathstat.sci.tu.ac.th

simulation results, Table I of Alonso et al. {8] and Table 2 of
Clements and Kim [10]. In this paper, we emphasis
constructing the simple prediction intervals, based on the
residual mode! described by Olive [11] for an AR(1) process
with an almost unit root and these prediction intervals have
minimum coverage probabilities 1 -« .

We consider an AR(1) {Y;t= 1,2,3,..,T } which satisfies

Lo=p+p(l ~p)+e, @
where p is the population mean, 0 is an autoregressive
parameter, pe (-1,1), and e, ~ N(0, o). For p=1, model
(1) is called the random walk model, otherwise; it is called a
stationary AR(1) process when p<1. In this paper, it is
therefore of interest to construct the prediction interval for (1)
when there is an uncertainty of this process, i.e, o is close to
one. Applications in econometrics of (1) in econometrics, when
it is doubtful whether this process is a stationary process or a
random walk process, have been described by Hamilton ‘([ 12},
PP- 501-503). Flamilton described the need to use thg unit root
hypothesis test to find the correct model for the serics of the
nominal interes: rate of the United States from 19471949 and
the real GNP for the United States from 1947-1989, see Figures
17.2-17.3 of Hamilton ([12], pp- 503). Hamilton also described
that there is no guarantee in economic theory suggc§tipg Qlat
the nominal interest rate serics should be a deterministic time
trend model, although Figure 17.2 shows an upward trend over
the sample data. The nodel for these data might be a random
walk without trend or a stationary process model with a
constant term. Therefore, the interesting question arises
whether a onc-step-ahead prediction interval of the true model
of the nominal interest rate series is computed from a random
walk model or a stationary model. To answer this question, the
unit root test, see e.g. Dickey and Fuller {13], will be used to
choose between these models. If the unit root test does not
reject the null fiypothesis; H,:p=1 against the alternative
hypothesis; H,:p<1, we conclude that this series is a
random watk model. We proceed to construct the prediction
interval for an AR(I) process using the random walk model.
However, if the hypothesis H. o 1 P =11s rejected, the prediction






